156. A Study on the Odour/Structure Relationship of Patchoulol and Norpatchoulenol¹)

by Helmut Spreitzer

Institute of Pharmaceutical Chemistry, University of Vienna, Waehringerstr. 10, A-1090 Vienna

(2.VII.90)

In continuation of studying structure/activity relationships of odorous compounds, the influence of the bridgehead-bonded Me group of (+)-norpatchoulenol (1) and (-)-patchoulol (2) and the olfactory properties of the corresponding unsaturated and saturated derivatives (\pm) -3, (\pm) -4 and (\pm) -5, (\pm) -6, respectively, are studied. The key odour descriptors – wood, earth, and camphor – are used for classification.

Introduction. – Patchouli oil, which is obtained by steam destillation of the dried leaves of *Pogostemon* cablin, is an oil of considerable importance in the cosmetic industry. The harmonious playing together of the woody, earthy, and camphoraceous notes renders this essential oil to a favourite and important ingredient in perfume compounding. This fact is reflected by a world production of more than 500 tons per annum [1]. Moreover, there is no commercially available synthetic substitute for this essential oil.

The two sesquiterpenic alcohols norpatchoulenol (+)-1 and patchoulol (-)-2 are the principal cause of the typical patchouli odour. It is an astonishing fact that there exist only three detailed examinations dealing with structure/activity relationship of these two compounds [2]. Näf et al. studied the influence of chirality to the olfactive properties of 2, exhibiting that only (-)-2 produces a strong and typical patchouli scent, while (+)-2 has a much weaker, nearly indefineable odour. *Mookherjee et al.* examined the question, which simplification of the tricyclic patchouli system is possible generating a patchouli-like aroma, successively degrading the tricyclic nucleus to a bicyclic and at least to a monocyclic partial structure. *Weyerstahl et al.* synthesized numerous compounds with a monocyclic partial structure of the tricyclic patchouli system. In this study, it was found that the size of the molecule, substitution pattern, existance of a hindered tertiary group, and the rigidity of structure are similarity determinations of the patchouli-aroma character. In the following examination, the influence of the bridgehead-bonded Me group of (+)-1

 Presented in part at the '11th Congress of Essential Oils, Fragrances and Flavours', New Delhi, 12 16th November, 1989. and (-)-2 is studied, and the olfactory properties of the corresponding unsaturated and saturated derivatives (\pm) -3, (\pm) -4 and (\pm) -5, (\pm) -6, respectively, are described.

Results and Discussion. – According to previous studies [3], a short route to (\pm) -3– (\pm) -6 should be accessable by radical induced $S_{\aleph}2'$ cyclization [4]. Starting from dienone 7 [5], the hydrogenated *Diels-Alder* adducts had to be epimerized to the *syn*-compounds 8/9 (*Scheme*). Because of the last and crucial cyclization step, the conversion to a *syn*-oriented side chain was a necessity.

Astonishing there was no great influence to the epimerization rate neither by the kind of base used nor by extending the reaction time. The *syn/anti*-ratio usually ranges at *ca*. 50%, but it was increased satisfactorily by unusual workup. Dropping the NaH/THF suspension into a buffered two-phase system Et_2O/H_2O raised the *syn/anti*-ratios in both cases to *ca*. 85–90%, furnishing **8/9** in high yields.

Grignard reactions of 8/9 followed by protection of the resulting tertiary alcohol as methoxymethyl ether leads to 10/11.

The reaction of ketyls with double bonds is scarcely used [6]. Generating ketyls from 10/11 by using highly dispersed Li in THF solely yielded the desired products 3/4 resulting from a $S_{\rm N}2'$ reaction; no by-products like 12, resulting from radical addition to the double bond, could be detected. However, a selective route leads to 12 by using Na in refluxing toluene [7]. Moreover, using Li gave far better yields of 3/4 than Na. In addition, GC/MS monitoring exhibited that both diastereoisomeric ethers of 10, but only one of 11, underwent cyclization.

The most remarkable and balanced odorous impression is displayed by the norpatchoulol analogue (\pm) -3 and the patchoulol analogue (\pm) -6. The absence of the bridgehead-bonded Me groups lead in both cases to an increase of the woody character and to a decline of the camphoraceous note. Compound (\pm) -3 has an intense odour – this is in accordance with results of *Mookherjee et al.* [2], because they demonstrated that the existence of a double bond located there would intensify the strength of odour – with a strong earthy and, above all, woody note, and only a weak camphoraceous by-note. The patchoulol analogue (\pm) -6 has a significantly weaker intense odour with a remarkable pleasant warm woody note, again only with a weak camphoraceous by-note.

The results are summarized in the *Table* where the key odour descriptors of (\pm) -3- (\pm) -6 are compared with the naturally occurring terpenes (+)-1 and (-)-2.

	Wood	Earth	Camphor
(+)-1 ^a)	+++	+++	+++
(-)-2 ^a)	+++	++	+++
(±)-3	++++	+++	+
(±)- 4	++	+++	+
(±)-5	+	+++	++++
(±)-6	++++	++	+
^a) See [2].	· · · ·		

Table. Odour Properties of Compounds (+)-1, (-)-2, and (\pm) -3- (\pm) -6

I am indepted to Mr. D. Braun, chief perfumer of Dragoco-Vienna for the organoleptic analyses of all new compounds. I also acknowledge with gratitude the kindly interest of Dragoco-Vienna in this work. I wish to thank Dr. J. Zak (Inst. of Phys. Chemistry) for the microanalyses and Doz. Dr. A. Nikiforov (Inst. of Org. Chemistry) for recording the mass spectra.

Experimental Part

General. S. [8].

syn-5,5-Dimethyl-6-oxobicyclo[2.2.2]octane-2-carbaldehyd (8). 1. anti-8,8-Dimethyl-7-oxobicyclo[2.2.2]oct-5-ene-2-carbaldehyd. A mixture of 14.52 g (0.12 mmol) of 6,6-dimethylcyclohexa-2,4-dienone (7) [5] and 13.44 g (0.24 mol) of acroleine in 12 ml of benzene were refluxed for 3 h in the presence of a small amount hydrochinone. After concentration under reduced pressure, the residue was distilled in a *Kugelrohr* apparatus at 76°/0.01 Torr yielding 19.0 g (89%). IR (NaCl, liquid film): 1715, 1730. ¹H-NMR (90 MHz, CDCl₃): 1.08 (s, 3 H); 1.13 (s, 3 H); 1.83 (m, 1 H); 2.23 (m, 1 H); 2.73 (m, 1 H); 2.90 (m, 1 H); 3.57 (m, 1 H); 6.03 (m, 1 H); 6.60 (m, 1 H); 9.57 (s, 1 H). MS: 178 (12, M^+), 122 (14), 121 (22), 107 (29), 79 (100), 77 (28), 70 (74), 43 (68). Anal. calc. for C₁₁H₁₄O₂ (178.23): C 74.13, H 7.92; found: C 73.90, H 8.08.

2. anti-5,5-Dimethyl-6-oxobicyclo[2.2.2]octane-2-carbaldehyd. The adduct (9.82 g, 55 mmol) was hydrogenated in AcOEt with Pd/C yielding 9.35 g (94%) of product. Bp. 116°/0.5 Torr. IR (NaCl, liquid film): 1715, 1725. ¹H-NMR (90 MHz, CDCl₃): 1.20 (s, 6 H); 2.73–3.0 (m, 2 H); 9.73 (s, 1 H). MS: 180 (28, *M*⁺), 107 (49), 86 (38), 79 (100), 70 (58), 67 (64), 43 (64). Anal. calc. for C₁₁H₁₆O₂ (180.25): C 73.30, H 8.95; found: C 73.00, H 9.01.

3. Hydrogenated adduct (9.0 g, 50 mmol) dissolved in 15 ml of THF, was added to a suspension of 1.40 g (60 mmol) of NaH in 20 ml of THF at 0° and refluxed for 2 h. The cooled mixture is added dropwise to a slow stirred mixture of 300 ml of Et₂O and 362 ml of H₂O containing 48 g of KH₂PO₄ and 54.5 g of Na₂HPO₄. Extraction with Et₂O and concentration yielded after distillation 7.38 g (82%) of **8** (*syn/anti* 89:11). IR (NaCl, liquid film): 1720. ¹H-NMR (80 MHz, CDCl₃): 1.04 (s, 3H); 1.14 (s, 3H); 9.59 (s, 1H). MS: 180 (29, M^+), 81 (62), 79 (57), 69 (54), 67 (78), 55 (50), 43 (49), 41 (100). Anal. calc. for C₁₁H₁₆O₂ (180.25): C 73.30, H 8.95; found: C 73.30, H 9.00.

6-syn-Acetyl-3,3-dimethylbicyclo[2.2.2]octan-2-one (9). Compound anti-9 (16.30 g, 84 mmol) [4] was treated with 3.37 g (140 mmol) of NaH in 60 ml of THF and worked up as described above: 16.1 g (98%) of 9 (syn/anti 86:14). Spectral data: see [3]. Anal. calc. for $C_{12}H_{18}O_2$ (194.27): C 74.17, H 9.34; found: C 74.03, H 9.41.

6-syn-[1-(Methoxymethoxy)prop-2-enyl]-3,3-dimethylbicyclo[2.2.2]octan-2-one (10). Compound 8 (7.0 g, 39 mmol) in 10 ml of THF was treated with 50 ml of 1M (50 mmol) vinyl magnesium bromide soln. in THF for 1 h at r.t. After usual workup, the obtained product was dissolved in 150 ml of MeCN and 15.4 g (85 mmol) of triethyl(methoxymethyl)ammonium chloride (Chlor-TEMMA [9]) were added and afterwards refluxed for 24 h. The cooled mixture was extracted with Et₂O, dried, and concentrated *in vacuo*, yielding 6.16 g (63%) of crude product which was purified by chromatography on silica gel (ligroin/AcOEt 90:10): 4.1 g (42) of pure 10. IR (NaCl,

liquid film): 1705, 1135, 1080, 1010. ¹H-NMR (80 MHz, CDCl₃): 1.14 (*s*, 6H); 1.4–2.3 (*m*, 9H); 3.37 (*s*, 3 H); 3.42 (*s*, 2 H); 4.36–4.8 (*m*, 2 H); 5.1–5.7 (*m*, 2 H). MS: 252 (1, M^+), 123 (18), 81 (15), 79 (13), 67 (34), 55 (10), 45 (100). Anal. calc. for C₁₅H₂₄O₃ (252.35): C 71.39, H 9.59; found C 71.24, H 9.64.

2,2-Dimethyltricyclo[$5.3.1.0^{3.8}$ Jundec-5-en-3-ol (3). Compound 10 (1.26 g, 5 mmol) was refluxed in 15 ml of THF containing 175 mg (25 mmol) of finely dispersed Li for 2 h. To the cooled suspension, H₂O is added cautiously. After all Li is destroyed, the mixture is extracted with Et₂O, washed with dil. HCl, and sat. NaHCO₃ soln., dried, and concentrated. The residue is chromatographed an silica gel (ligroin/Et₂O 80: 20) yielding 605 mg (63%) of 3. ¹H-NMR (80 MHz, CDCl₃): 1.1 (s, 6H); 5.4–5.9 (m, 2H). MS: 192 (42, M^+), 131 (33), 123 (31), 108 (100), 95 (44), 91 (31), 79 (32), 55 (33). Anal. calc. for C₁₃H₂₀O (192.30): C 81.20, H 10.48; found: C 80.91, H 10.58.

2,2-Dimethyltricyclo[5.3.1.0^{3,8}]undecan-3-ol (5). Compound 3 (250 mg, 1.3 mmol) was hydrogenated with Pd/C in AcOEt yielding 220 mg (87%) of 5. ¹H-NMR (80 MHz, CDCl₃): 1.1 (s, 6H), 1.1–2.2 (m, 9H). MS: 194 (72, M^+), 151 (100), 133 (99), 110 (91), 97 (82), 91 (91), 84 (92), 55 (76). Anal. calc. for C₁₃H₂₂O (194.32): C 80.35, H 11.41; found: C 80.12, H 11.67.

2,2,6-Trimethyltricyclo[5.3.1.0^{3,8}]undecan-3-ol (6). 2,2,6-Trimethyltricyclo[5.3.1.0^{3,8}]undec-5-en-3-ol (4; 155 mg, 0.75 mmol) [3] was hydrogenated with Pd/C in AcOEt yielding 130 mg (83%) of 6. ¹H-NMR (80 MHz, CDCl₃): 0.86 (d, J = 6, 3H); 1.12 (s, 6H). MS: 208 (74, M^+), 147 (69), 124 (66), 111 (64), 98 (100), 91 (64), 83 (72), 55 (77). Anal. calc. for C₁₄H₂₄O (208.35): C 80.71, H 11.61; found: C 80.78, H 11.74.

REFERENCES

- K. Bauer, D. Garbe, in 'Common Fragrance and Flavour Materials', VCH Verlagsges. m.b.H., Weinheim, 1985, p. 162f.
- [2] F. Näf, R. Decorzant, W. Giersch, G. Ohloff, *Helv. Chim. Acta* 1981, 64, 1387; B.D. Mookherjee, K.K. Light, I.D. Hill, in 'Essential Oils', Eds. B.D. Mookherjee and C.J. Mussinan, Allured Publishing Corp., Wheaton, Illinois, 1981, p. 247; P. Weyerstahl, H.D. Splittgerber, J. Walteich, T. Wollny, *J. Ess. Oil Res.* 1989, 1, 1.
- [3] H. Spreitzer, A. Hausensteiner, G. Buchbauer, Monatsh. Chem. 1986, 117, 1405.
- [4] M. Bertrand, P. Teisseire, G. Pelerin, Nouv. J. Chim. 1983, 7, 61.
- [5] K. Alder, F. H. Flock, H. Lessenich, Chem. Ber. 1957, 90, 1709.
- [6] M. Ramaiah, Tetrahedron 1987, 43, 3541 (p. 3669).
- [7] H. Spreitzer, H. Kalchhauser, Liebigs Ann. Chem. 1990, 7, 709.
- [8] H. Spreitzer, G. Buchbauer, S. Reisinger, Helv. Chim. Acta 1989, 72, 806; H. Spreitzer, I. Rösslhuber, H. Kienzl, E. Dörrer, G. Buchbauer, Monatsh. Chem. 1990, 121, 195.
- [9] E. J. Corey, J. L. Gras, P. Ulrich, Tetrahedron Lett. 1976, 809.